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Abstract

This paper examines some theoretical aspects of the optimal design of multi-scale fluid distributors or collectors, built on a binary or quatern
branching pattern of pores. The design aims to distribute uniformly a fluid flow over a specified square surface (uniform irrigation) while simult
neously minimizing the residence time, the residence-time distribution, the pressure drop and the viscous dissipation, leading to an optimiza
problem of the pore-size distribution, for both length and diameter. For the binary branching, the uniform distribution of outlet points requires
particular, non-monotonous scaling law for pore lengths, and this distinguishes the structure from fractal branching patterns that havedeen stu
previously. The quaternary branching allows a fractal-type structure (constant scale ratios for both pore length and radius). An important gen
result is established: in the optimal pore-size distributibie, density of viscous dissipation povx(w-m*3) is uniformly distributed over the
volume at all scales
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction This problem may be approached using the so-calteah-
structal theory, developed by Bejan and his co-workers from
The present article is concerned with the design of fluid dis 1996 on, a quite general theory of multi-scale shapes and struc-

tributors or collectors for multi-tubular or multi-pore devices tUrés in nature and engineering [1-3]. The specific approach
such as cross-flow heat exchangers, monolithic catalysts, afresented here starts from [4] and extends this work with some

sorption columns or the like. For this purpose, we considef€W results and new situations.

branching networks such as that illustrated on Fig. 1. Prop- [N “constructal” terms, the distributor or collector problem
erties expected from a “good” distributor are equidistribution!S toPologically one of connection between a point and a sur-
of the flow-rate (uniform irrigation), minimal dispersion, min- face. The “point” is here the single inlet tube or pore, and the
imal void volume, minimal pressure drop, leading necessarilf“rface is the do_mam that must be fed by the distributed flow.
to some compromise. The reason for minimizing void volume' he approach will be restricted here to square or rectangular

is best understood when one considers operations like start-uB“tlet surfaces. Let us first describe the distributor/collector
rinsing, back-washing, displacement, elution, change of solof Fig. L.

vent or depressurization. For a given flow-rate, minimizing void

volume obviously also implies minimizing the mean residence2. A branched fluid distributor

time, and equidistribution of the flow is essential to minimizing

the residence time distribution. 2.1. Description
" Corresponding author. The solid pyramidal block of Fig. 1 has an internal pore
E-mail addresslingai.luo@univ-savoie.fr (L. Luo). network shown in Fig. 2; its projection on the “base plane”
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Nomenclature

a parameter in pressure-drop relation (Eg. (8)) N
(dimension depends on flow model) p.q
A = (ap)/272, defined by Eq. (12) (dimension -
depends on flow model) Ui
d viscous dissipation power in single pore of class "
K e s31 Ve
Dy total viscous dissipation power in pores of clasls v,
K o -sJ
Drot total viscous dissipation power in structure s APk
fr flow-rate in single pore of clags......... st ¢
fo total flow-rate in structure .............. gt @
Iy length of pore ofclasé ..................... m *
L width of outlet face of structure ............. m K
m total number of scales (maximum valuei)f v
ni number of pores of clags

number of outlet ports of distributor
parameters in pressure-drop relation (Eq. (14))

radius of poreofclask ..................... m
fluid velocity in pore of clasg ........... ms1
volume of a single pore ofclags........... n
total volume of poresofclags ............. m
total pore volume of the structure ........... Sm
pressure drop in pore ofclags.............. Pa

volume fraction, porosity

Lagrangian function (Eqg. (10))

Lagrange multiplier

fluid viscosity ................. ... Ra
general distribution function of pore volume and
dissipation

Fig. 1. Prototype of binary-branched fluid distributor for uniform irrigation;
dimensions of base: § 6 cm; smallest pore radius at outlet: 0.75 mm.

representing the irrigated surface is shown in Fig. 3. It has the
structure of a sequence of 8 generation® obr Y -bifurcations

or divisions. The resulting pores are indexed from 0 to 8, in-
cluding the inlet pore (index 0). The latter is split perpendic-
ularly into two opposing pores (index 1), and each of these
is again split into two pores (index 2), such that pores of in-
dex 1 and 2 are coplanar. These three successive generations
of pores form the basic pattern, the elementary cell, which
will be reproduced at smaller scales. Since there are 8 gen-
erations of bifurcations, there aré 2 256 final outlet pores,
open on the outlet face of this “pyramid”. It is of course in
principle possible to continue the dichotomy to generate say
29 or 210 outlet ports. The present distributor was designed
to distribute equally an input flow on a square surface with a
“resolution” of approximately 8 outlet ports per émcorre-
sponding to a theoretical outlet surface of 322dside= 5.66

cm) and was manufactured by laser polymerization stereolitho-

graphy [5].

Fig. 2. Pore structure of binary-branched fluid distributor.
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Fig. 3. Projection of pore network on base plane.
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Number of pores for any generation of indiex
ng =28 1)
Number of end points (outlet ports) fer generations:
N=2" )
Total number of pores:
m=Yy m=2(2"-1) ©)

Scaling laws for pore lengths:

_ L .
‘I‘ lk = W |f k even
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«
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ATREN FOTRACAT k= k92
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liv2
Total “horizontal” path length from inlet to outlet, with even:

Fig. 4. Pore network with smooth direction changes. ‘
=m

= = —_ 7”’1/2
Different variants of this structure may be produced. Figs. 1ltOt Z k L[l 2 ] ®)

. : . o2 k=1
and 2 illustrate a design where the changes in flow direction . )
are sharp, but it may be designed with smooth changes as ithis length clearly converges towardswhenm increases, in

Fig. 4, implying smaller pressure drop, but larger pore volumePther words, the path length of the fluid is smaller tHabut
and overall volume (less compactness). The most compact dglose to it (about 0.94. for m = 8).

sign is a “flat” distributor in which all channels are embedded ~ This construct is therefore such thhe256flow pathsfrom
in the same “layer”. This is possible only if the largest channefn€ unique inlet to any one of the 256 outlete strictly iden-

is narrower than the distance separating two outlet ports [4]. tical. The flow-rate through all outlet ports and the residence
times in the 256 paths should be identical, satisfying by con-

struction the equidistribution property, but also minimal disper-

sion of residence time. In the approach developed above, the

pore lengths are entirely determined by the overall size of the

distributor and the constraint of uniform outlet distribution. No
Let L be the length of the side of the square outlet faceother consideration is introduced, and in particulae length

Then the two branches or pores of generation 1 have a horizoulistribution is fully independent of the pore radip be de-

tal lengthl/y = L /4, and the pores of the second generation havéermined below. The object developed here is not a fractal in

the same length = L /4. The four end points of these pores arethe usual sense, because the pore length distribution (Eq. (4))

located in the centre of the four squares subdividing the outletannot be described by a fractal dimension. The object is not

face. This uniform distribution property should be conserved irf'scale-invariant” but rather “scale-covariant” [3]. Let us now

subsequent constructions. The third generation of pores havecansider the question of pore diameters.

lengthl/s = L/8, and their 8 end points cannot be uniformly dis-

tributed since it is not possible to subdivide a square into 8 equa8. Optimization of the pore size distribution

squares. Only at generation 4 will this be possible again, with

l4 = L/8. Generally speaking, to achieve uniform distribution3.1. Constitutive equations

of end points, thus of potential outlet ports, two conditions are

required: The distribution of pore radii, will be determined by an

optimization that specifies the total flow-ratg and accounts

e an even number of generatioms this produces a number for both viscous dissipation and total pore volurig. One of
of end points that is an even power of 2 and the square ahese constraints alone will not yield an optimal size distribu-
an integer, such as4 22, 16= 2%, 64=25,256=28,etc.  tion: minimizing the volume would lead to infinitely thin pores,

e conservation of horizontal pore length when going from anand minimizing pressure drop or dissipation would result in as
odd to an even generation, and dividing by 2 the pore lengtltarge pores as possible. The constitutive relations of our model
when going from even to odd. for a single pore of lengtl), and radius are summarized be-

low and comprise relations for the flow-rafe (m3-s~1), the
The result of this accounting, evidenced on Fig. 3, is sumpore volumey; (md), the pressure dropp; (Pa), and the dis-
marized as follows: sipationd; (W)

2.2. Number of bifurcations and scaling laws for horizontal
pore lengths
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—2/(p+2)

fi= fo/2t (6) [&} R P IN
Vg = nlkrkz @) A Vp X

q . qg+1

ap fi li 17~ =

APk=7 ;cp 8) with b 2p+2 k=1,...,m) (13)

k
di = f Apk 9) Let us examine the meaning of these relations. Eq. (11) ex-

presses that the two contributions to the Lagrangian function,

wherea is a numerical constant. volume and dissipation, are in the same constant ratio in all

The form of the pressure drop expression (Eq. (8)) is analehannels, at all scales, including that of the whole construct.
ogous to Poiseduille’s law (for which =1, p =4, a =8).  This is a form of “equipartition of irreversibilities” [7], where
The parameters, p and g account for the departure from the space variable over which equipartition occurs is the pore
established laminar flow and for the presence of flow sinvolume. We shall express this fundamental result in a formal
gularities (bifurcations and changes in direction). Assumingfashion as the following theorem, where the dissipation density
isothermal incompressible flow, entropy production is propor-s defined as dissipation per unit volume fw 3):
tional to dissipation. Note that if bifurcations are replaced by
“multi-furcations”, where a pore is subdivided into sub- Theorem of uniform dissipation density
pores, Egs. (1) and (6) may be generalized, the factor 2 being The pore size distribution that minimizes viscous dissipation
replaced byw, but the length determination of the previous sec-  (or entropy productioly at constrained pore volume, is such
tion must be revisited entirely. that dissipation density is uniform in the whole construct.

3.2. Lagrangian optimization for minimal total dissipation Note that dissipation density (Wi3) is closely related but

not equivalent to pressure dropr(d-3). We discuss this point
The optimization problem considered is to find the pore sizdurther in the conclusion section.

distribution thatminimizes the total dissipatioP; Subject to Eq. (12) tells that the optimal radius depends on the scale

the constraint of constant total pore volung. For this pur- & only through a numerical factor (the parameters contained in

pose, we introduce the Lagrangian functidna linear combi- A, A and fo are independent df). In addition, this relation is

nation of the two quantities defined above, dissipation and por#@dependent of pore lengtRecall that the pore length is deter-

volume, expressed as sums over all channels of the expressioméned by the outlet surface (actually, by the lengthand the

in Egs. (9) and (7), respectively: equidistribution constraint. We shall see further below the con-
sequences of these properties on the relations between scales.
To obtain an explicit relation for the optimal radius, we first
_ k k 2_ '
¢ = kzlz itsp + A(ZZ 7l V”) need to exploit Eq. (13).

struct as a whole, and of the total flow-rafgbut independent
of the particular scale indek. In other words, the Lagrange
wherex is a Lagrange multiplier. We shall refer to the two termsmultiplier A is a property of the construct as a whole. To make
in the bracket of the right-hand side as tiligsipation term  this more explicit, let us eliminate thg using Eq. (6), and the
and thehold-up term respectively. At specified overall flow- [; by introducing the ratiog /L obtained from Eq. (4). Eq. (13)
rate fo and pore lengthg, this relation is differentiated with may then be recast in the following form:
respect tor and to eachr, and the derivatives are cancelled
(Euler equations) to find the conditions of an extremunwof PA
It is possible to verify that this extremum is a minimum (the \ A
second derivatives ap with respect to, are positive). These m _—
cglculatlons are straightforward and only some end results are _ |: Z ok(1-b) o= (k+2)/2 Z ok(1-b) _2(k+3)/2:|
given below:

Ratio of dissipation to pore volume

) Note that all quantities involved in Eq. (13), including the
l
Tk

m q . .
a summation, are calculable constants, characteristic of the con-
= 2 :zk [7’* fk—p" + mzkrf} -V, (10)
k=1

m
Vo _ 3 2K L

)—2/(17+2)
nLfé = L

k even k odd

=o(m) (14)
& = De = Dot = Z—A (k=1,...,m) (11)  The way the upper limit of the summations in the bracket are
v Vi Vi p written assumes thai is even, as discussed in Section 2.2. Re-
Optimal pore radius call that for Poiseuille flow, the parametgris equal to 23.
It can be seen that the bracket is independent of the physical
,]f’+2 - PA g+1 — ﬁfgﬂ“lzf(ﬁl)k quantities (flow-rate, viscosity, siZzeof the construct, pore size
A A distribution), and depends only on the number of scalesnd
with A = % k=1,...,m) (12)  on the hydrodynamic law through It is therefore a sort of
JT

“universal” function, characteristic of the binary tree topology
Relation for Lagrange multiplier described here. We designate this functionday:) and call
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it a “constructal function”. Indeed, we shall see that the prop-constructal functiors. Eqg. (18) illustrates intermediate calcu-
erties of the optimal construct may be expressed in terms détions for pressure drop, using successively Egs. (8), (17), (13)
o (m), and similar non-dimensional functions are generated byor the definition ofb, and (14) for the definition of:
other constructal optimizations. Owing to its general interest, "
we give some more attention to its peculiar properties.

g P prop APtot:ZAPk:

k=1
_auLfg |:7rLoi|p/2 DL 279k

apLfg 2": I 2-ak
T
k=1

L rlfopt
3.3. Properties of the constructal functietim) - ’

Observe first that (m) is composed of two series, one with - v, I 2—bpk/2
k even, the other wittt odd. Let us illustrate these series for k=1
Poiseuille flow, i.eb = 2/3. The exponents of the generic terms = 2Af{ (xLo)P/?HLy, P/? (18)

are then—(k + 6)/6 for k even, and—(k + 9)/6 for k odd. ) o
The explicit form of the two series and their summation are ad Ne last equality results from the fact that the last summation is

follows: equal too . For Poiseuille flow, Eq. (18) reduces to:
Oeven= 375+ 553+ 63 T 5 T Smree A Por(Poiseille = 8nufo—V2 (19)
0-4/3 _ o~ (m+6)/6  p—1/3 g
- 1-2-1/3 =1.924(1— 2—m/ 6) Total dissipation is simply obtained from total pressure drop
- by multiplying by the total flow-rate, as may be verified in
. 1 1 1 1 1 Eqg. (20):
odd = 55t e T rE T T T Qmreye
m
2-5/3 _ 9—(m+8)/6 . o—1/3 _ X _ i fo
= _15271—2"/8) (15) D= 2 filpi=3 250 An
1-2-13 k=1
These are geometric series with the same factéf®and dif- = fo Z Api = foA Prot (20)

fering only by the first and last terms. Their summation is there-
fore straightforward and given in Eq. (15). The final compactDissipation has therefore the same power dependence as pres-
form of o (m) for Poiseuille flow andn even is thus: sure drop on all variables except flow-rate.

o (m)=3.4511—2"/9] (16)

Fig. 5 illustrates this function graphically.
The optimal properties may be expressed in terms of thig 4 Scaling law for pore radii

quantity. Let us substitute the expressionAgi. obtained from

Eq. (14) into the expression for the optimal radius, Eq. (12). We

find that the flow-ratefp cancels out and the final expression for

4. Scaling laws and distributions

Scaling laws are relations between quantities pertaining to
. is conveniently written as: different sca_les or generations. Eq_s. (1_2) or(17)is use_d to gen-
k.opt y ’ erate a relation between pore radii of different generations. For
2-bk Vp this purpose, consider a bifurcation of a pore of radjusith
Lo (m) 17) flow-rate f, into two pores of radir1 with flow-rate f; /2.
QWriting for example Eq. (12) twice, fof, andry1, and divid-

2 _
=

This expression may be substituted into the expressions f h ) _
total pressure drop or total dissipation for example. Some mdDd the two expressions, one gets:
nipulations are required to transform the summations into the

(r—k)p—FZ: <i>q+1:2q+1: (M_k)p+2 or
35 Tk+1 Srt1 U+1
3 — Tk _ Mk _op)2 (21)
25 Tkl Ukl
s 5 For the special case of Poiseuille flow, the exponet# be-
g, comes equal to /B, and recovers an old result of Murray [6]
n 15 attempting to model the structure of the vascular system. This
1 value was approximately applied to the prototype shown on
05 Fig. 1. It is noteworthy thathe ratio of radii is independent
' of pore lengths, providing the pressure drop l&&qg. (8)) is
0 the same at all scaledf bifurcations were replaced by trifur-
0 5 10 15 20 25 cations, say, the factor 2 would just be replaced by a factor 3.

Further scaling laws may be established for properties such as

pore areas, pressure drop, dissipation and pore volumes. We just
Fig. 5. The constructal functiom for the binary branching structure. present the latter two.

Number of scales m
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volume are in a constant raticOn the other hand, the flow
cross-sectionS; and the wall surface area; of the pores,

As an example of this approach, let us consider the scakwhich is of interest when designing heat exchangers for exam-
ing law of dissipation and pore volumes. Recall that the poreple, scale in reverse, that is the exponents have the opposite
lengths are not in a constant ratio (see Eq. (4)); we must ther&igns.
fore distinguish two cases, according to the paritykofThe
formulae in Table 1 are given @ for individual pores, and as 4.3, pore volume distributions
Dy, for the ensemble of the pores of cldssThe scaling laws
for total volumes of clask are obtained by combining Egs. (4)
and (21).

4.2. Scaling laws for dissipation and pore volume

The volume fractiorz; of each pore size in the optimal con-
struct is defined as a function of the total number of scales
Examining the expressions for the relative overall dissi-

pation (Egs. (22) and (23)), it is seen that for< 1 (such by:

as Poiseuille flow), the bifurcations which conserve the pore,. _ Y« _ Vi\a (28)
length ¢ odd, first column) result in an increase of dissipation k= V,(m) 7 Vo

(Dy. is larger thanDy 1), while the bifurcations where the pore
length decreases always result in a decrease of dissipation (s

the inequality signs). To get a more global and homogeneou

where the ratios/;/ V1 are given by Eq. (24), andt,/Vy is
Saelculated by:

result, it is appropriate to consider the dissipation ratio of ton k=m L L
scales apart by two levels, thatlig / Dy 2. This is done simply 2 — - Z k= o(-b)k-1)
by multiplying Egs. (22) and (23), after the appropriate change1 = Ll
in index. We then obtain, irrespective lobeing odd or even: ;
o _ K 5(1—-b)(k—1)+2 _ ob+1
D dissipation at scale =) =2 =215 (m 29
k Issipati —ob-l.gb 21 (o7) ZL (m) (29)

Diy2 d|SS|pat|on at scale + 2

This quantity is larger than 1 fér> 1/2 (such as the Poiseuille The second equality of Eq. (29) is obtained by using the explicit
case), meaning thatissipation globally decreases toward the formulae for the volumes and Eq. (17). The third equality is
smaller scalegincrease ok). obtained by lettingl. /{1 = 2% and the fourth by factoring out
Interesting corollaries are obtained for other quantities andhe constructal functionr. Note that the quantity appearing in
summarized as follows: Eq. (29) (i.e.V,/ V1) was designated by (m) in [4], and that
The pressure drop ratiodpy /Aprr1 andApg/Aprs2] and  there is thus a simple relation betwegrando. We found the
the overall pore volume ratios/[/ Viy1 and Vi/ Vii2] obey  latter function more general and analytically summable. The
exactly the same relationships as dissipation, that is, they scal®lume fractionss; are then obtained by combining Egs. (25)
as defined by Eq. (27). This can be seen for volume by comand (29) (see Table 2).
paring Eq. (24) to Egs. (22), (23). This also means #tany The histogram of the volume fraction distribution is shown
scalek, the dissipation, the pressure drop, and the total porein Fig. 6 form = 8 andm = 20. Obviously, when the number

Table 1

Parity ofk k=1,35,... k=2,4,6,...
Pore length Ik =lks1 lky1=1U/2
Pore flow rate Skv1=Jfx/2 Sk+1=Jx/2

Pore radius Tkl = rkz_b/z Tky1= rkz_b/z
N aff M afi M yn
Dissipationd; fkApg = kmpk JeApk = kmpk
k k
Dissipationdy ;1 di41 =dj - 2-b di41 =dj - 2-b-1
; issination2k dk  _ 9b-1 __d Tk 2
Relative overall dlssmatlom = 2 = =% = =G >t (22), (23)
; Vi _ob-1 Vi _ob
Relative pore volume Vk+1 2 Vi (24)
— 2((1=2b)(k-1))/2 % — 2((1=2b)k)/2+b-1 (25)
1
1k (Poiseville = 21-1)/6 T (Poiseville = 2(4=)/6 (26)
Table 2
Parity ofk 0Odd: 1 3,5,7,... Even: 24,6,8,...
Volume fraction of class, & o1, 2k(=20)=3)/2 o—1.2kd-20)-4)/2 (30)
Volume fractions;, for Poiseuille flow o~1.o7k/6-3/2 o~1.07k/6-2 (31)
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Fig. 6. Distribution of volume fractions for dichotomic construet £ 8 and

m = 20); this distribution holds as well for partial pressure drop and partial

dissipation.
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of scalesn becomes Iarger, the contributions of each scale beI':ig. 7. Cumulative volume distributions for dichotomic construet=£ 8 and
comes smaller and smaller, and more so for the smallest scalgs— 20); this distribution holds as well for cumulative pressure drop and cu-

A further interesting relation may easily be obtained for¢he
mulative volume distributigrusing Eq. (29):

pore volume up to clags
total pore volume

k k
1 Vi VeV k
R S ARE S QLS Ve A e 7
Vv, =TV, =T, o (m)

Fig. 7 shows this distribution for = 20. An essential point is
thatthe histogram of Fig6 is identical for fractional dissipa-
tion Dy / Diot and fractional pressure droppy /A Piot, and the
histogram of Fig.7 is identical for cumulative dissipation and
cumulative pressure drop

5. The case of equipartition of dissipation: the fractal
dichotomic distributor

mulative dissipation.

fie1= fi/2 andry 11 = r 273, but lettingl;,1 free, we ob-
tain:

De _ le 5 (33)
Dit1 ey
Imposing that this ratio be equal to 1 for &l(equipartition of
dissipation) yields:

e Tk _gusn 06 K _p0-nys (34)
ley1 rem I

Contrarily to the case studied above, the pore lengths change
with every scale change, and are in the same ratio as their radii.
The same result was obtained by Bejan [2] as a result of the
minimization of flow resistance&nder the constraint of allo-
cating a given area to a constrycivhich may be expressed
as 4;l;+1 = constantk). The meaning of this constraint is in

With the general theoretical background in hand, it is worthprinciple one of “compactness”, or space saving, not of equidis-

examining whetheequipartition of the dissipation, or of en-

tribution. Area allocation on one hand, and equipartition of dis-

tropy production between the different scales makes sense, anglipation on the other hand, thus lead to the same scaling laws
leads to a situation of interest (see, for example [3,7] for disfor bothlengths and radii. We can therefore consider these ap-
cussions of this concept). For this purpose, we need to relagroaches as equivalent, in this sense. The object that we thus
the constraint on the pore lengths, and let them become an opefine is a “pseudo-fractal”: the scaling rules are invariant with
timization parameter, and impose equipartition of dissipatiorscale (there is no difference between even and odd generations).

instead. We keep the “optimal” ratio of the radii (Eq. (21))

however. Expressing again the dissipation radjg Dy.1 with

What are the properties of this “equipartitioned” construct,
compared to the previous one, recalling that the scaling law for



1138 L. Luo, D. Tondeur / International Journal of Thermal Sciences 44 (2005) 1131-1141

radii is the same? First, the path length from inlet to outlet is
given by summation on Eq. (34), giving:

k=8 k=8
Y=Yy 24P~ 102L (35)
k=1 k=1

This value is to be compared to the value &41. found above
(Eg. (5)) for the “non-equipartitioned” structure (compare also
the limits whenn becomes large, approximately?L, as com- %
pared toL). The path length in the equipartition case is there-
fore longer, in other words, this structure is in fact less compact
This property is actually verified from the fifth generation up.
The fact of changing the scale rules between even and odd ge
erations allows more compacity than a pure fractal with full
scale invariance.

The equipartitioned case is therefore disadvantageous, not
only with respect to compacity, but also with respect to hold-up
dissipation and pressure dropn addition, it cannot ensure uni-
form distribution over a pre-specified surface. From the point of]
view of distributor design, equipartition of dissipation and full
scale invariance therefore yield poorer performances than th
construct proposed here.

A further property of this structure is that the volumegs
of all scales are identical (equipartition of pore volume over

isncaIEes),(gj)mgi)I/q (?ee c\j/iirsn;le;[i?r/l (i::lguil?tlggi:if;e rﬂll r’_b :é;lle :)S_ factor 2 is replaced by 4. Interestingly, the equations involving
g =a. ' P quip Y & are conserved as well provided the definition of the construc-

our premise, this implies that the theorem on equipartition (uni-

formity) of dissipationover volume(dissipation density) also tal function is modified in the same way, replacing 2 by 4. We
y P P y designate bys4 this new constructal function, the subscript 4

-
1

Fig. 8. Schematics of a quaternary-branched distributor; the lateral connections,
materialized by squares, are not accounted for in the theoretical approach.

holds. referring to the quadrichotomy, and we have:
6. Extension to different branching topologies on= Zm 4k(1—b)l_k - Em :4k<l—b> .o—k=1/2
L

As an illustration, consider the construct of Fig. 8 which is k=1 k=1
under investigation in our team, and which also distributes a m . 1 — k(1-2b)

) — \ " ok(-2p)-1/2 _
fluid onto a square surface through 4 256 regularly spaced Z —1-2

e . ) . V2[2-(1=2b) _ 1)

outlet ports. The basic difference with the previous case is of =1
course the quaternary division (quadrichotomy), with the cones(Poiseuille = 2.72(1 — 2""/3) (37)

sequences that the number of divisions, thus of scales, is divided The last equality results from the summation of the geomet-
by two to reach the same final resolution (here, 256), and the quatty 9

. . 2h . . .
channel length is divided by two at each generation change. WG series with factor 22, There is no simple relation between

e
thus have a regular pattern for the channel length, contrarily tg

g4 ando = o7 introduced previously because the ratipsL
the dichotomic case. The other difference is the existence o bey different rules. With this newy, Egs. (14) and (18) re-

. . ... main valid. The main scale relations for the different quantities
lateral connections (symbolized by squares) between division . L )
re summarized below and it is of interest to compare the expo-

points of a given class. The purpose of these connections is 5 . :
- . qents to the dichotomic case.
equilibrate the pressures between these points and therefore 16

compensate for possible geometric irregularities. In a “perfect” "k _ 45 _ ob di — 93-bp Dy — ol-bp
construct, there should be no flow in these connections. For thec1 ' dr+1 Diy1 ’
present purpose, we shgll ignore them. Apr 3-bp Vii 21 Vi _ (1) (2b-1)
The constitutive relations are then: Apis1 ’ Vigl ’ Vi

—kb
=4 m/mr=1/4  l/h1=2 Yk (poiseuillg = 20073, 2 Ve AT
WL=2%2 ffaa=4 fi=fod @) % IV

APt =2Af{ (x Lo)P/?t 1y, P/ (38)

The first branches have a lendthequal to one quarter of the
diagonal of length ¥2L. The factor 2 of the previous case is Several features are noticeable: first, the pressure drop expres-
replaced by 4 wherever it appears. The calculations may bgion is identical to that of the dichotomic case; second, the
carried out according to the same procedure. It is found for exvolume does not scale as pressure drop or dissipation, but in-
ample that Egs. (12), (13) and (21) are conserved provided thetead has the same exponenvasV;.» in the dichotomic case,



L. Luo, D. Tondeur / International Journal of Thermal Sciences 44 (2005) 1131-1141 1139

2b — 1. Third, for Poiseuille flow, it turns out thatb2- 1 =  function. Although odd and even classes of pores do not obey
3 — bp =1/3, so that the exponents for volume, local dissi-the same relations and display different dissipations, a general
pation and pressure drop are identical and express a decregseperty emerges, stated as the theoremniform dissipation
toward the smaller scales. An essential result is thattheo-  density at all scales.

rem of uniform dissipation density is valid for this structure.  The properties of this construct are compared to one in
This may be verified by establishing that the radjgv; (Ilo-  which the dissipation (not the dissipation density!) is postulated
cal dissipation density) is independentkofusing successively to be uniformly distributed, resulting in a fractal structure (all
Egs. (8) and (9) for the expressiondyf Eq. (36) relatingf, and  properties are scale invariant). The latter, besides not having
fo, and Eq. (17) for the optimal pore radius. Itis then found thata uniform irrigation of the outlet surface, is less compact and
the terms depending dnare in the exponents of 2 or 4 and fi- globally less performing.

nally cancel. As a resuldy /vy is also equal to the ratiaBy / Vi A similar development has been carried out for a fractal-
and Dyot/ V), (obtained by summations of the numerator andlike quaternary-branched structure with uniform irrigation, for
denominator ofi /v ), and this establishes the theorem. which the scale relations of pore length are simpler than for the

Clearly, a similar approach can be transposed to other divibinary branching (they do not depend on parity of the branch).
sions as 2 or 4, such as trichotomy. The results imply a factoAll the previous analytical results are extended to this structure
3 instead of a factor 2 or 4, and a new function is intro-  using a new constructal function specific of this topology. The
duced. The extension to combinations say of dichotomy antheorem of uniform dissipation density is shown to apply here
trichotomy, or any other combinations, is in principle straight-as well.

forward, but the compactness of the results is lost. A qualitative visualization of the invasion of the structure by
a tracer-flow is shown, which paves the way for further studies
7. Experimentation on distributors on flow non-idealities and their quantification.

Let us discuss a point which has been briefly addressed in the

Our research teams are carrying out experimental work obeginning of this paper, namely that of pressure-drop minimiza-
various constructal structures (distributors, mixers, heat extion instead of dissipation. It is found that if total pressure-drop
changers). As a preliminary illustration, Fig. 9 visualizes theis used to form the Lagrange function instead of total dissipa-
invasion of the dichotomic tree distributor (a “flat” version) by tion, and the optimization carried out in the same way, the same
a fluid carrying an optical tracer (particles used in PIV experi-results are obtained: Eq. (14) fer Eq. (17) forr, Eq. (18) for
ments). The pictures are a small sample of that taken by a fastal pressure drop, scale Egs. (22)—(26). As a result, since the
camera, and show the structure from above at different instantength distribution is the same, the relations for dissipation and
of time. The time span involved is a fraction of a second. Thes¢he pore volume distribution are the same. Minimizing pressure
pictures clearly illustrate the inhomogeneity of the invasion: nodrop or minimizing dissipation are therefore equivalent, illus-
all channels of a given scale are reached at the same time, atrdting the close physical connection between these notions.
there will be a flow dispersion and a residence-time distribution, The question that then arises is whether it is useful to intro-
which may be quantified through these experiments, thus a deluce dissipation. We believe it is the case for two reasons. The
parture from the ideal distribution (plug-flow type) assumed infirst reason lies in the possibility to define a dissipation den-
all the theoretical developments above. This point will not besity and to state a general result such as the uniform dissipation
discussed further here but obviously calls for a theoretical apdensity theorem, valid for all constructs discussed here. Recall

proach that accounts for departure from plug-flow. that in the dichotomic construct, dissipation density is uniform
whereas pressure drop is not equal in channels of different gen-
8. Discussion and conclusions erations (that have different volumes). It would therefore not

be possible to state a conservation or equipartition property in

With respect to Ref. [4] addressing the same problematic oferms of pressure drop. The second reason is outside the scope
pore-size optimization under constraint of total pore volumepf the present paper and concerns processes where phenom-
a number of new features are brought forward in the presergna other than viscous flow, such as heat and/or mass transfer,
article, while remaining in the framework of isothermal ide- would contribute to dissipation. Dissipation, or even more gen-
alised plug-flow. First, the analytical approach introduced inerally, entropy production, is then a more appropriate notion for
[4] for the binary-branched tree has been extended with a moreptimization.
general flow equation, and fully explicit and compact solutions A different line of thought around the same concepts is to
have been obtained for the various geometric and engineeringpnsider the deterministic structure as a random porous medium
quantities (pore radii distribution, volume fraction distribution, and introduce the methods, models and variables pertinent to
pressure drop, viscous dissipation) by formal summation of théhis domain. As a hint, suppose we wanted to characterize the
series involved. In doing this, the notion of “constructal func-structure by some kind of permeability or permeance, defined
tion” o has been introduced, as a summable series dependimg the ratio of overall flow-rate #rs~1) to the total pressure
only on the branching pattern and the flow equation, but indedrop (Pa). Egs. (18) or (19) obviously furnish such a relation.
pendent of the other physical or geometric parameters. Quar-he ratio fo/ AP does not furnish a conventional permeance,
tities such as optimal pore radii, total pressure drop, volumasually defined per unit cross-sectional areas(hPa 1), be-
fraction distribution may then be expressed in terms of thicause the cross-sectional area of the construct is variable, and
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Fig. 9. Invasion of binary-branched structure by a tracer-liquid. Photographs are ordered at increasing times from left to right and top to bottom.

so is the flow velocity. A conventional permeance would there-of the irrigation (number of outlet ports per unit surface, say),
fore be a variable or would have to be averaged, thus limitingr alternately, defined by the number of channels or tubes that
the interest of this notion. need to be fed. Increasing the fineness of irrigation, thus the

Finally, we should like to address briefly the issueopti- number of scales, implies increasing the total pore volume (see
mization of the number of scalds the present approach, this the numerical example in [4]). The latter is not an optimization
number is not an optimization variable but a decision variablevariable, because just as the number of scales, it is maintained
chosen a priori by the designer on the basis of the “finenesstonstant during the optimization.



L. Luo, D. Tondeur / International Journal of Thermal Sciences 44 (2005) 1131-1141 1141

Suppose now that there was a device downstream of the oufkcknowledgements
let ports, achieving a finer distribution on the whole surface, not
just at discrete points, such as a fine grid or porous plug, hav- This work is supported by the French Agence de I'Environ-
ing itself a flow resistance. The question is then how the overaiement et de la Maitrise de 'Energie.
resistance should be distributed between the branched distribu-
tor and this grid, and therefore how many branching scales afg€ferences

useful. If we assume that the pressure drop in the grid is propor- _ o _ .

tional to the average distance of a point of the irrigated surfact" (Ac'ﬁae;‘; i\g)"anced Engineering Thermodynamics, Wiley, New York, 1997

toan Ou_tle? port, then this quantity decreas_es when the f'n_ener? A. Bejan, Shape and Structure, from Engineering to Nature, Cambridge

of the distributor thus the number of scalesncrease (specif- University Press, Cambridge, 2000.

ically, for the dichotomic case, this distance is divided by twol3] A. Bejan, D. Tondeur, Equipartition, optimal allocation, and the constructal

at every increase of: by 2) On the other hand. the pressure approach to predicting organization in nature, Rev. Gén. Therm. 37 (1998)
. e . ’ 165-180.

drop in the bra.nChed distributor IncreaseSoz.(m). The. total [4] D. Tondeur, L. Luo, Design and scaling laws of ramified fluid distributors

pressure drop is thus the sum of a decreasing function and of by the constructal approach, Chem. Engrg. Sci. 59 (8-9) (2004) 1799-1813.

an increasing function of:, leading obviously to some optimal [5] J.C. André, S. Corbel (Collective), Stéréophotolithographie laser, Polytech-

number of scales. Formulated in this way, the problem is closer_ Nica Paris, ISBN 2-84054-021-5,1994.

to that v add d with th tructal h t 6] C.D. Murray, The physiological principle of minimum work, |. The vascu-

0 tha Common_y addressed wi e consfructa ap.pro'ac N lar system and the cost of blood volume, Proc. Nat. Acad. Sci. 12 (1926)

problem of cooling a poorly conducting surface by distributing  207-214.

into it a good conducting material. In this case, as discussed ré# E. Kvaalen, D. Tondeur, Equipartition of entropy production: an optimality

cently in detail by Ghodoossi [8] the number of scales should criterion for transfer and separation processes, Ind. Engrg. Chem. Res. 26

. e . . (1987) 50-56.

be consldered_ as an optlr_nlzatlpn variable. Dependlng on th[%] L. Ghodoossi, Conceptual study on constructal theory, Energy Conv.

respective resistances, this optimal may well correspond to &' manag. 45 (2004) 1379-1395.

small number of scales, for which the general recurrent rela-

tions presented here are not needed.



