
uaternary
simulta-

ptimization
quires a

een studi
nt general
International Journal of Thermal Sciences 44 (2005) 1131–1141
www.elsevier.com/locate/ijts

Optimal distribution of viscous dissipation
in a multi-scale branched fluid distributor

L. Luo a,∗, D. Tondeurb

a LOCIE, ESIGEC Université de Savoie, Chambery, France
b Laboratoire des Sciences du Génie Chimique du CNRS, ENSIC-INPL, Nancy, France

Received 25 April 2005; accepted 31 August 2005

Available online 27 October 2005

Abstract

This paper examines some theoretical aspects of the optimal design of multi-scale fluid distributors or collectors, built on a binary or q
branching pattern of pores. The design aims to distribute uniformly a fluid flow over a specified square surface (uniform irrigation) while
neously minimizing the residence time, the residence-time distribution, the pressure drop and the viscous dissipation, leading to an o
problem of the pore-size distribution, for both length and diameter. For the binary branching, the uniform distribution of outlet points re
particular, non-monotonous scaling law for pore lengths, and this distinguishes the structure from fractal branching patterns that have bed
previously. The quaternary branching allows a fractal-type structure (constant scale ratios for both pore length and radius). An importa
result is established: in the optimal pore-size distribution,the density of viscous dissipation power(W·m−3) is uniformly distributed over the
volume at all scales.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The present article is concerned with the design of fluid
tributors or collectors for multi-tubular or multi-pore devic
such as cross-flow heat exchangers, monolithic catalysts
sorption columns or the like. For this purpose, we cons
branching networks such as that illustrated on Fig. 1. P
erties expected from a “good” distributor are equidistribut
of the flow-rate (uniform irrigation), minimal dispersion, mi
imal void volume, minimal pressure drop, leading necessa
to some compromise. The reason for minimizing void volu
is best understood when one considers operations like sta
rinsing, back-washing, displacement, elution, change of
vent or depressurization. For a given flow-rate, minimizing v
volume obviously also implies minimizing the mean residen
time, and equidistribution of the flow is essential to minimizi
the residence time distribution.
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This problem may be approached using the so-called “con-
structal theory”, developed by Bejan and his co-workers fro
1996 on, a quite general theory of multi-scale shapes and s
tures in nature and engineering [1–3]. The specific appro
presented here starts from [4] and extends this work with s
new results and new situations.

In “constructal” terms, the distributor or collector proble
is topologically one of connection between a point and a
face. The “point” is here the single inlet tube or pore, and
surface is the domain that must be fed by the distributed fl
The approach will be restricted here to square or rectang
outlet surfaces. Let us first describe the distributor/colle
of Fig. 1.

2. A branched fluid distributor

2.1. Description

The solid pyramidal block of Fig. 1 has an internal po
network shown in Fig. 2; its projection on the “base plan
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Nomenclature

a parameter in pressure-drop relation (Eq. (8))
(dimension depends on flow model)

A = (aµ)/2π2, defined by Eq. (12) (dimension
depends on flow model)

dk viscous dissipation power in single pore of class
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J·s−1

Dk total viscous dissipation power in pores of class
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J·s−1

Dtot total viscous dissipation power in structure . J·s−1

fk flow-rate in single pore of classk . . . . . . . . m3·s−1

f0 total flow-rate in structure . . . . . . . . . . . . . . m3·s−1

lk length of pore of classk . . . . . . . . . . . . . . . . . . . . . m
L width of outlet face of structure . . . . . . . . . . . . . m2

m total number of scales (maximum value ofk)
nk number of pores of classk

N number of outlet ports of distributor
p,q parameters in pressure-drop relation (Eq. (14))
rk radius of pore of classk . . . . . . . . . . . . . . . . . . . . . m
uk fluid velocity in pore of classk . . . . . . . . . . . m·s−1

vk volume of a single pore of classk . . . . . . . . . . . m3

Vk total volume of pores of classk . . . . . . . . . . . . . m3

Vp total pore volume of the structure . . . . . . . . . . . m3

�pk pressure drop in pore of classk . . . . . . . . . . . . . . Pa
ε volume fraction, porosity
Φ Lagrangian function (Eq. (10))
λ Lagrange multiplier
µ fluid viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa·s
Ψ general distribution function of pore volume and

dissipation
n;

th

in
ic-
es
in

atio
ich

ge
,
in
sa

ned
h a

itho
Fig. 1. Prototype of binary-branched fluid distributor for uniform irrigatio
dimensions of base: 6× 6 cm; smallest pore radius at outlet: 0.75 mm.

representing the irrigated surface is shown in Fig. 3. It has
structure of a sequence of 8 generations ofT - or Y -bifurcations
or divisions. The resulting pores are indexed from 0 to 8,
cluding the inlet pore (index 0). The latter is split perpend
ularly into two opposing pores (index 1), and each of th
is again split into two pores (index 2), such that pores of
dex 1 and 2 are coplanar. These three successive gener
of pores form the basic pattern, the elementary cell, wh
will be reproduced at smaller scales. Since there are 8
erations of bifurcations, there are 28 = 256 final outlet pores
open on the outlet face of this “pyramid”. It is of course
principle possible to continue the dichotomy to generate
29 or 210 outlet ports. The present distributor was desig
to distribute equally an input flow on a square surface wit
“resolution” of approximately 8 outlet ports per cm2, corre-
sponding to a theoretical outlet surface of 32 cm2 (side= 5.66
cm) and was manufactured by laser polymerization stereol
graphy [5].
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Fig. 2. Pore structure of binary-branched fluid distributor.

Fig. 3. Projection of pore network on base plane.
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Fig. 4. Pore network with smooth direction changes.

Different variants of this structure may be produced. Fig
and 2 illustrate a design where the changes in flow direc
are sharp, but it may be designed with smooth changes
Fig. 4, implying smaller pressure drop, but larger pore volu
and overall volume (less compactness). The most compac
sign is a “flat” distributor in which all channels are embedd
in the same “layer”. This is possible only if the largest chan
is narrower than the distance separating two outlet ports [4

2.2. Number of bifurcations and scaling laws for horizontal
pore lengths

Let L be the length of the side of the square outlet fa
Then the two branches or pores of generation 1 have a hor
tal lengthl1 = L/4, and the pores of the second generation h
the same lengthl2 = L/4. The four end points of these pores a
located in the centre of the four squares subdividing the o
face. This uniform distribution property should be conserve
subsequent constructions. The third generation of pores h
lengthl3 = L/8, and their 8 end points cannot be uniformly d
tributed since it is not possible to subdivide a square into 8 e
squares. Only at generation 4 will this be possible again,
l4 = L/8. Generally speaking, to achieve uniform distribut
of end points, thus of potential outlet ports, two conditions
required:

• an even number of generationsm; this produces a numbe
of end points that is an even power of 2 and the squar
an integer, such as 4= 22, 16= 24, 64= 26, 256= 28, etc.

• conservation of horizontal pore length when going from
odd to an even generation, and dividing by 2 the pore len
when going from even to odd.

The result of this accounting, evidenced on Fig. 3, is su
marized as follows:
n
in
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Number of pores for any generation of indexk:

nk = 2k (1)

Number of end points (outlet ports) form generations:

N = 2m (2)

Total number of pores:

nt =
∑

nk = 2
(
2m − 1

)
(3)

Scaling laws for pore lengths:

lk = L

2(k+2)/2
if k even

lk = L

2(k+3)/2
if k odd

lk

lk+2
= 2 (4)

Total “horizontal” path length from inlet to outlet, withm even:

ltot =
k=m∑
k=1

lk = L
[
1− 2−m/2] (5)

This length clearly converges towardsL whenm increases, in
other words, the path length of the fluid is smaller thanL but
close to it (about 0.94L for m = 8).

This construct is therefore such thatthe256flow pathsfrom
the unique inlet to any one of the 256 outletsare strictly iden-
tical. The flow-rate through all outlet ports and the reside
times in the 256 paths should be identical, satisfying by c
struction the equidistribution property, but also minimal disp
sion of residence time. In the approach developed above
pore lengths are entirely determined by the overall size of
distributor and the constraint of uniform outlet distribution. N
other consideration is introduced, and in particular,the length
distribution is fully independent of the pore radii,to be de-
termined below. The object developed here is not a fracta
the usual sense, because the pore length distribution (Eq
cannot be described by a fractal dimension. The object is
“scale-invariant” but rather “scale-covariant” [3]. Let us no
consider the question of pore diameters.

3. Optimization of the pore size distribution

3.1. Constitutive equations

The distribution of pore radiirk will be determined by an
optimization that specifies the total flow-ratef0 and accounts
for bothviscous dissipation and total pore volumeVp. One of
these constraints alone will not yield an optimal size distri
tion: minimizing the volume would lead to infinitely thin pore
and minimizing pressure drop or dissipation would result in
large pores as possible. The constitutive relations of our m
for a single pore of lengthlk and radiusrk are summarized be
low and comprise relations for the flow-ratefk (m3·s−1), the
pore volumevk (m3), the pressure drop�pk (Pa), and the dis
sipationdk (W)
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fk = f0/2k (6)

vk = πlkr
2
k (7)

�pk = aµ

π

f
q
k lk

r
p
k

(8)

dk = fk�pk (9)

wherea is a numerical constant.
The form of the pressure drop expression (Eq. (8)) is a

ogous to Poiseuille’s law (for whichq = 1, p = 4, a = 8).
The parametersa, p and q account for the departure from
established laminar flow and for the presence of flow
gularities (bifurcations and changes in direction). Assum
isothermal incompressible flow, entropy production is prop
tional to dissipation. Note that if bifurcations are replaced
“multi-furcations”, where a pore is subdivided intow sub-
pores, Eqs. (1) and (6) may be generalized, the factor 2 b
replaced byw, but the length determination of the previous s
tion must be revisited entirely.

3.2. Lagrangian optimization for minimal total dissipation

The optimization problem considered is to find the pore s
distribution thatminimizes the total dissipationDtot subject to
the constraint of constant total pore volumeVp. For this pur-
pose, we introduce the Lagrangian functionΦ, a linear combi-
nation of the two quantities defined above, dissipation and
volume, expressed as sums over all channels of the expres
in Eqs. (9) and (7), respectively:

Φ =
m∑

k=1

2kfk�p + λ
(∑

2kπlkr
2
k − Vp

)

=
m∑

k=1

2k

[
aµ

π

f
q+1
k lk

r
p
k

+ λπlkr
2
k

]
− λVp (10)

whereλ is a Lagrange multiplier. We shall refer to the two ter
in the bracket of the right-hand side as thedissipation term,
and thehold-up term, respectively. At specified overall flow
ratef0 and pore lengthslk , this relation is differentiated with
respect toλ and to eachrk , and the derivatives are cancell
(Euler equations) to find the conditions of an extremum ofΦ.
It is possible to verify that this extremum is a minimum (t
second derivatives ofΦ with respect tork are positive). These
calculations are straightforward and only some end results
given below:

Ratio of dissipation to pore volume

dk

vk

= Dk

Vk

= Dtot

Vp

= 2λ

p
(k = 1, . . . ,m) (11)

Optimal pore radius

r
p+2
k = pA

λ
f

q+1
k = pA

λ
f

q+1
0 2−(q+1)k

with A = aµ

2π2
(k = 1, . . . ,m) (12)

Relation for Lagrange multiplier
l-

-

-

g

e
ns

re

[
pA

λ

]−2/(p+2)

= π

Vp

∑
k

2klkf
b
k

with b = 2
q + 1

p + 2
(k = 1, . . . ,m) (13)

Let us examine the meaning of these relations. Eq. (11)
presses that the two contributions to the Lagrangian func
volume and dissipation, are in the same constant ratio in
channels, at all scales, including that of the whole constr
This is a form of “equipartition of irreversibilities” [7], wher
the space variable over which equipartition occurs is the p
volume. We shall express this fundamental result in a for
fashion as the following theorem, where the dissipation den
is defined as dissipation per unit volume (W·m−3):

Theorem of uniform dissipation density
The pore size distribution that minimizes viscous dissipa
(or entropy production), at constrained pore volume, is su
that dissipation density is uniform in the whole construct

Note that dissipation density (W·m−3) is closely related bu
not equivalent to pressure drop (J·m−3). We discuss this poin
further in the conclusion section.

Eq. (12) tells that the optimal radius depends on the s
k only through a numerical factor (the parameters containe
A, λ andf0 are independent ofk). In addition, this relation is
independent of pore length.Recall that the pore length is dete
mined by the outlet surface (actually, by the lengthL) and the
equidistribution constraint. We shall see further below the c
sequences of these properties on the relations between s
To obtain an explicit relation for the optimal radius, we fi
need to exploit Eq. (13).

Note that all quantities involved in Eq. (13), including t
summation, are calculable constants, characteristic of the
struct as a whole, and of the total flow-ratef0 but independen
of the particular scale indexk. In other words, the Lagrang
multiplier λ is a property of the construct as a whole. To ma
this more explicit, let us eliminate thefk using Eq. (6), and the
lk by introducing the ratioslk/L obtained from Eq. (4). Eq. (13
may then be recast in the following form:(

pA

λ

)−2/(p+2) Vp

πLf b
0

=
m∑

k=1

2k(1−b) lk

L

=
[

m∑
k even

2k(1−b) · 2−(k+2)/2 +
m−1∑
k odd

2k(1−b) · 2−(k+3)/2

]

= σ(m) (14)

The way the upper limit of the summations in the bracket
written assumes thatm is even, as discussed in Section 2.2. R
call that for Poiseuille flow, the parameterb is equal to 2/3.
It can be seen that the bracket is independent of the phy
quantities (flow-rate, viscosity, sizeL of the construct, pore siz
distribution), and depends only on the number of scalesm and
on the hydrodynamic law throughb. It is therefore a sort o
“universal” function, characteristic of the binary tree topolo
described here. We designate this function byσ(m) and call
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it a “constructal function”. Indeed, we shall see that the pr
erties of the optimal construct may be expressed in term
σ(m), and similar non-dimensional functions are generated
other constructal optimizations. Owing to its general inter
we give some more attention to its peculiar properties.

3.3. Properties of the constructal functionσ(m)

Observe first thatσ(m) is composed of two series, one wi
k even, the other withk odd. Let us illustrate these series f
Poiseuille flow, i.e.b = 2/3. The exponents of the generic term
are then−(k + 6)/6 for k even, and−(k + 9)/6 for k odd.
The explicit form of the two series and their summation are
follows:

σeven = 1

24/3
+ 1

25/3
+ 1

26/3
+ 1

27/3
+ · · · + 1

2(m+6)/6

= 2−4/3 − 2−(m+6)/6 · 2−1/3

1− 2−1/3
= 1.924

(
1− 2−m/6)

σodd = 1

25/3
+ 1

26/3
+ 1

27/3
+ 1

28/3
+ · · · + 1

2(m+8)/6

= 2−5/3 − 2−(m+8)/6 · 2−1/3

1− 2−1/3
= 1.527

(
1− 2−m/6) (15)

These are geometric series with the same factor 2−1/3 and dif-
fering only by the first and last terms. Their summation is the
fore straightforward and given in Eq. (15). The final comp
form of σ(m) for Poiseuille flow andm even is thus:

σ(m) = 3.451
[
1− 2−m/6] (16)

Fig. 5 illustrates this function graphically.
The optimal properties may be expressed in terms of

quantity. Let us substitute the expression forA/λ obtained from
Eq. (14) into the expression for the optimal radius, Eq. (12).
find that the flow-ratef0 cancels out and the final expression
rk,opt is conveniently written as:

r2
k = 2−bkVp

πLσ(m)
(17)

This expression may be substituted into the expressions
total pressure drop or total dissipation for example. Some
nipulations are required to transform the summations into

Fig. 5. The constructal functionσ for the binary branching structure.
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constructal functionσ . Eq. (18) illustrates intermediate calc
lations for pressure drop, using successively Eqs. (8), (17),
for the definition ofb, and (14) for the definition ofσ :

�Ptot =
m∑

k=1

�pk = aµLf
q

0

π

m∑
k=1

lk

L

2−qk

r
p
k,opt

= aµLf
q

0

π

[
πLσ

Vp

]p/2 m∑
k=1

lk

L

2−qk

2−bpk/2

= 2Af
q

0 (πLσ)p/2+1V
−p/2
p (18)

The last equality results from the fact that the last summatio
equal toσ . For Poiseuille flow, Eq. (18) reduces to:

�Ptot(Poiseuille) = 8πµf0
(Lσ)3

V 2
p

(19)

Total dissipation is simply obtained from total pressure d
by multiplying by the total flow-rate, as may be verified
Eq. (20):

Dtot =
m∑

k=1

2kfk�pk =
∑

2k f0

2k
�pk

= f0

∑
�pk = f0�Ptot (20)

Dissipation has therefore the same power dependence as
sure drop on all variables except flow-rate.

4. Scaling laws and distributions

4.1. Scaling law for pore radii

Scaling laws are relations between quantities pertainin
different scales or generations. Eqs. (12) or (17) is used to
erate a relation between pore radii of different generations.
this purpose, consider a bifurcation of a pore of radiusrk with
flow-ratefk , into two pores of radiirk+1 with flow-ratefk/2.
Writing for example Eq. (12) twice, forrk andrk+1, and divid-
ing the two expressions, one gets:

(
rk

rk+1

)p+2

=
(

fk

fk+1

)q+1

= 2q+1 =
(

uk

uk+1

)p+2

or

rk

rk+1
= uk

uk+1
= 2b/2 (21)

For the special case of Poiseuille flow, the exponentb/2 be-
comes equal to 1/3, and recovers an old result of Murray [
attempting to model the structure of the vascular system.
value was approximately applied to the prototype shown
Fig. 1. It is noteworthy thatthe ratio of radii is independen
of pore lengths, providing the pressure drop law(Eq. (8)) is
the same at all scales. If bifurcations were replaced by trifur
cations, say, the factor 2 would just be replaced by a facto
Further scaling laws may be established for properties suc
pore areas, pressure drop, dissipation and pore volumes. W
present the latter two.
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4.2. Scaling laws for dissipation and pore volume

As an example of this approach, let us consider the s
ing law of dissipation and pore volumes. Recall that the p
lengths are not in a constant ratio (see Eq. (4)); we must th
fore distinguish two cases, according to the parity ofk. The
formulae in Table 1 are given asdk for individual pores, and a
Dk for the ensemble of the pores of classk. The scaling laws
for total volumes of classk are obtained by combining Eqs. (
and (21).

Examining the expressions for the relative overall dis
pation (Eqs. (22) and (23)), it is seen that forb < 1 (such
as Poiseuille flow), the bifurcations which conserve the p
length (k odd, first column) result in an increase of dissipat
(Dk is larger thanDk+1), while the bifurcations where the po
length decreases always result in a decrease of dissipation
the inequality signs). To get a more global and homogene
result, it is appropriate to consider the dissipation ratio of
scales apart by two levels, that isDk/Dk+2. This is done simply
by multiplying Eqs. (22) and (23), after the appropriate cha
in index. We then obtain, irrespective ofk being odd or even:

Dk

Dk+2
= dissipation at scalek

dissipation at scalek + 2
= 2b−1 · 2b = 22b−1 (27)

This quantity is larger than 1 forb > 1/2 (such as the Poiseuill
case), meaning thatdissipation globally decreases toward t
smaller scales(increase ofk).

Interesting corollaries are obtained for other quantities
summarized as follows:

The pressure drop ratios [�pk/�pk+1 and�pk/�pk+2] and
the overall pore volume ratios [Vk/Vk+1 and Vk/Vk+2] obey
exactly the same relationships as dissipation, that is, they
as defined by Eq. (27). This can be seen for volume by c
paring Eq. (24) to Eqs. (22), (23). This also means thatat any
scalek, the dissipation, the pressure drop, and the total p
l-
e
e-

e

ee
s

e

d

le
-

volume are in a constant ratio. On the other hand, the flow
cross-sectionSk and the wall surface areaAk of the pores,
which is of interest when designing heat exchangers for ex
ple, scale in reverse, that is the exponents have the opp
signs.

4.3. Pore volume distributions

The volume fractionεk of each pore size in the optimal co
struct is defined as a function of the total number of scalem

by:

εk = Vk

Vp(m)
= Vk

V1

V1

Vp

(28)

where the ratiosVk/V1 are given by Eq. (24), andVp/V1 is
calculated by:

Vp

V1
=

k=m∑
k=1

Vk

V1
=

m∑
k=1

lk

L

L

l1
2(1−b)(k−1)

=
m∑

k=1

lk

L
2(1−b)(k−1)+2 = 2b+1σ(m) (29)

The second equality of Eq. (29) is obtained by using the exp
formulae for the volumes and Eq. (17). The third equality
obtained by lettingL/l1 = 22 and the fourth by factoring ou
the constructal functionσ . Note that the quantity appearing
Eq. (29) (i.e.Vp/V1) was designated byψ(m) in [4], and that
there is thus a simple relation betweenψ andσ . We found the
latter function more general and analytically summable.
volume fractionsεk are then obtained by combining Eqs. (2
and (29) (see Table 2).

The histogram of the volume fraction distribution is sho
in Fig. 6 for m = 8 andm = 20. Obviously, when the numbe
Table 1

Parity ofk k = 1,3,5, . . . k = 2,4,6, . . .

Pore length lk = lk+1 lk+1 = lk/2
Pore flow rate fk+1 = fk/2 fk+1 = fk/2

Pore radius rk+1 = rk2−b/2 rk+1 = rk2−b/2

Dissipationdk fk�pk = af
q+1
k

lkµ

πr
p
k

fk�pk = af
q+1
k

lkµ

πr
p
k

Dissipationdk+1 dk+1 = dk · 2−b dk+1 = dk · 2−b−1

Relative overall dissipationDk
Dk+1

= dk
2dk+1

= 2b−1 = dk
2dk+1

= 2b = (
rk

rk+1
)2 > 1 (22), (23)

Relative pore volume Vk
Vk+1

= 2b−1 Vk
Vk+1

= 2b (24)

Vk
V1

= 2((1−2b)(k−1))/2 Vk
V1

= 2((1−2b)k)/2+b−1 (25)

Vk
V1

(Poiseuille) = 2(1−k)/6 Vk
V1

(Poiseuille) = 2(4−k)/6 (26)

Table 2

Parity ofk Odd: 1,3,5,7, . . . Even: 2,4,6,8, . . .

Volume fraction of classk, εk σ−1 · 2(k(1−2b)−3)/2 σ−1 · 2(k(1−2b)−4)/2 (30)

Volume fractionεk for Poiseuille flow σ−1 · 2−k/6−3/2 σ−1 · 2−k/6−2 (31)
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Fig. 6. Distribution of volume fractions for dichotomic construct (m = 8 and
m = 20); this distribution holds as well for partial pressure drop and pa
dissipation.

of scalesm becomes larger, the contributions of each scale
comes smaller and smaller, and more so for the smallest sc
A further interesting relation may easily be obtained for thecu-
mulative volume distribution, using Eq. (29):

pore volume up to classk

total pore volume

= 1

Vp

k∑
k=1

Vk = V1

Vp

k∑
k=1

Vk

V1
= V1

Vp

2b+1σ(k) = σ(k)

σ (m)
(32)

Fig. 7 shows this distribution form = 20. An essential point is
that the histogram of Fig.6 is identical for fractional dissipa-
tion Dk/Dtot and fractional pressure drop�pk/�Ptot, and the
histogram of Fig.7 is identical for cumulative dissipation an
cumulative pressure drop.

5. The case of equipartition of dissipation: the fractal
dichotomic distributor

With the general theoretical background in hand, it is wo
examining whetherequipartition of the dissipation, or of en
tropy production, between the different scales makes sense,
leads to a situation of interest (see, for example [3,7] for
cussions of this concept). For this purpose, we need to r
the constraint on the pore lengths, and let them become a
timization parameter, and impose equipartition of dissipa
instead. We keep the “optimal” ratio of the radii (Eq. (21
however. Expressing again the dissipation ratioDk/Dk+1 with
l

-
s.

d
-
x
p-

(a)

(b)

Fig. 7. Cumulative volume distributions for dichotomic construct (m = 8 and
m = 20); this distribution holds as well for cumulative pressure drop and
mulative dissipation.

fk+1 = fk/2 andrk+1 = rk2−1/3, but lettinglk+1 free, we ob-
tain:
Dk

Dk+1
= lk

lk+1
· 2−1/3 (33)

Imposing that this ratio be equal to 1 for allk (equipartition of
dissipation) yields:

lk

lk+1
= rk

rk+1
= 21/3 ≈ 1.26,

lk

l1
= 2(1−k)/3 (34)

Contrarily to the case studied above, the pore lengths ch
with every scale change, and are in the same ratio as their
The same result was obtained by Bejan [2] as a result of
minimization of flow resistanceunder the constraint of allo
cating a given area to a construct, which may be expresse
as 2lklk+1 = constant(k). The meaning of this constraint is
principle one of “compactness”, or space saving, not of equ
tribution. Area allocation on one hand, and equipartition of d
sipation on the other hand, thus lead to the same scaling
for both lengths and radii. We can therefore consider these
proaches as equivalent, in this sense. The object that we
define is a “pseudo-fractal”: the scaling rules are invariant w
scale (there is no difference between even and odd generat

What are the properties of this “equipartitioned” constru
compared to the previous one, recalling that the scaling law
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radii is the same? First, the path length from inlet to outle
given by summation on Eq. (34), giving:

k=8∑
k=1

lk = l1

k=8∑
k=1

2(1−k)/3 ≈ 1.02L (35)

This value is to be compared to the value of 0.94L found above
(Eq. (5)) for the “non-equipartitioned” structure (compare a
the limits whenm becomes large, approximately 1.2L, as com-
pared toL). The path length in the equipartition case is the
fore longer, in other words, this structure is in fact less comp
This property is actually verified from the fifth generation u
The fact of changing the scale rules between even and odd
erations allows more compacity than a pure fractal with
scale invariance.

The equipartitioned case is therefore disadvantageous,
only with respect to compacity, but also with respect to hold
dissipation and pressure drop. In addition, it cannot ensure un
form distribution over a pre-specified surface. From the poin
view of distributor design, equipartition of dissipation and f
scale invariance therefore yield poorer performances than
construct proposed here.

A further property of this structure is that the volumesVk

of all scales are identical (equipartition of pore volume o
scales), as may be verified by calculating the ratioVk/Vk+1 us-
ing Eq. (34). Since dissipation is equipartitionedover scalesby
our premise, this implies that the theorem on equipartition (
formity) of dissipationover volume(dissipation density) als
holds.

6. Extension to different branching topologies

As an illustration, consider the construct of Fig. 8 which
under investigation in our team, and which also distribute
fluid onto a square surface through 44 = 256 regularly space
outlet ports. The basic difference with the previous case i
course the quaternary division (quadrichotomy), with the c
sequences that the number of divisions, thus of scales, is div
by two to reach the same final resolution (here, 256), and
channel length is divided by two at each generation change
thus have a regular pattern for the channel length, contrari
the dichotomic case. The other difference is the existenc
lateral connections (symbolized by squares) between divi
points of a given class. The purpose of these connections
equilibrate the pressures between these points and theref
compensate for possible geometric irregularities. In a “perf
construct, there should be no flow in these connections. Fo
present purpose, we shall ignore them.

The constitutive relations are then:

nk = 4k, nk/nk+1 = 1/4, lk/ lk+1 = 2

lk/L = 2−k−1/2, fk/fk+1 = 4, fk = f0/4k (36)

The first branches have a lengthl1 equal to one quarter of th
diagonal of length 21/2L. The factor 2 of the previous case
replaced by 4 wherever it appears. The calculations ma
carried out according to the same procedure. It is found for
ample that Eqs. (12), (13) and (21) are conserved provided
-
t!

n-

t

f

e

-

a

f
-
d
e
e
o
f
n
to
to

”
e

e
-
e

Fig. 8. Schematics of a quaternary-branched distributor; the lateral connec
materialized by squares, are not accounted for in the theoretical approach

factor 2 is replaced by 4. Interestingly, the equations involv
σ are conserved as well provided the definition of the const
tal function is modified in the same way, replacing 2 by 4.
designate byσ4 this new constructal function, the subscrip
referring to the quadrichotomy, and we have:

σ4 =
m∑

k=1

4k(1−b) lk

L
=

m∑
k=1

4k(1−b) · 2−k−1/2

=
m∑

k=1

2k(1−2b)−1/2 = 1− 2k(1−2b)

√
2[2−(1−2b) − 1]

σ4(Poiseuille) = 2.72
(
1− 2−m/3) (37)

The last equality results from the summation of the geom
ric series with factor 21−2b. There is no simple relation betwee
σ4 andσ = σ2 introduced previously because the ratioslk/L

obey different rules. With this newσ4, Eqs. (14) and (18) re
main valid. The main scale relations for the different quanti
are summarized below and it is of interest to compare the e
nents to the dichotomic case.

rk

rk+1
= 4

b
2 = 2b,

dk

dk+1
= 23−bp Dk

Dk+1
= 21−bp,

�pk

�pk+1
= 23−bp,

Vk

Vk+1
= 22b−1,

Vk

V1
= 2(1−k)(2b−1)

Vk

V1
(Poiseuille) = 2(1−k)/3, r2

k = Vp

πL

4−kb

σ4

�Ptot = 2Af
q

0 (πLσ)p/2+1V
−p/2
p (38)

Several features are noticeable: first, the pressure drop ex
sion is identical to that of the dichotomic case; second,
volume does not scale as pressure drop or dissipation, bu
stead has the same exponent asVk/Vk+2 in the dichotomic case
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2b − 1. Third, for Poiseuille flow, it turns out that 2b − 1 =
3 − bp = 1/3, so that the exponents for volume, local dis
pation and pressure drop are identical and express a dec
toward the smaller scales. An essential result is thatthe theo-
rem of uniform dissipation density is valid for this structu
This may be verified by establishing that the ratiodk/vk (lo-
cal dissipation density) is independent ofk, using successivel
Eqs. (8) and (9) for the expression ofdk , Eq. (36) relatingfk and
f0, and Eq. (17) for the optimal pore radius. It is then found t
the terms depending onk are in the exponents of 2 or 4 and
nally cancel. As a result,dk/vk is also equal to the ratiosDk/Vk

andDtot/Vp, (obtained by summations of the numerator a
denominator ofdk/vk), and this establishes the theorem.

Clearly, a similar approach can be transposed to other
sions as 2 or 4, such as trichotomy. The results imply a fa
3 instead of a factor 2 or 4, and a newσ3 function is intro-
duced. The extension to combinations say of dichotomy
trichotomy, or any other combinations, is in principle straig
forward, but the compactness of the results is lost.

7. Experimentation on distributors

Our research teams are carrying out experimental wor
various constructal structures (distributors, mixers, heat
changers). As a preliminary illustration, Fig. 9 visualizes
invasion of the dichotomic tree distributor (a “flat” version)
a fluid carrying an optical tracer (particles used in PIV exp
ments). The pictures are a small sample of that taken by a
camera, and show the structure from above at different ins
of time. The time span involved is a fraction of a second. Th
pictures clearly illustrate the inhomogeneity of the invasion:
all channels of a given scale are reached at the same time
there will be a flow dispersion and a residence-time distribut
which may be quantified through these experiments, thus a
parture from the ideal distribution (plug-flow type) assumed
all the theoretical developments above. This point will not
discussed further here but obviously calls for a theoretical
proach that accounts for departure from plug-flow.

8. Discussion and conclusions

With respect to Ref. [4] addressing the same problemati
pore-size optimization under constraint of total pore volum
a number of new features are brought forward in the pre
article, while remaining in the framework of isothermal id
alised plug-flow. First, the analytical approach introduced
[4] for the binary-branched tree has been extended with a m
general flow equation, and fully explicit and compact solutio
have been obtained for the various geometric and engine
quantities (pore radii distribution, volume fraction distributio
pressure drop, viscous dissipation) by formal summation o
series involved. In doing this, the notion of “constructal fun
tion” σ has been introduced, as a summable series depen
only on the branching pattern and the flow equation, but in
pendent of the other physical or geometric parameters. Q
tities such as optimal pore radii, total pressure drop, volu
fraction distribution may then be expressed in terms of
se
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function. Although odd and even classes of pores do not o
the same relations and display different dissipations, a gen
property emerges, stated as the theorem ofuniform dissipation
density at all scales.

The properties of this construct are compared to one
which the dissipation (not the dissipation density!) is postula
to be uniformly distributed, resulting in a fractal structure (
properties are scale invariant). The latter, besides not ha
a uniform irrigation of the outlet surface, is less compact
globally less performing.

A similar development has been carried out for a frac
like quaternary-branched structure with uniform irrigation,
which the scale relations of pore length are simpler than for
binary branching (they do not depend on parity of the bran
All the previous analytical results are extended to this struc
using a new constructal function specific of this topology. T
theorem of uniform dissipation density is shown to apply h
as well.

A qualitative visualization of the invasion of the structure
a tracer-flow is shown, which paves the way for further stud
on flow non-idealities and their quantification.

Let us discuss a point which has been briefly addressed i
beginning of this paper, namely that of pressure-drop minim
tion instead of dissipation. It is found that if total pressure-d
is used to form the Lagrange function instead of total diss
tion, and the optimization carried out in the same way, the s
results are obtained: Eq. (14) forσ , Eq. (17) forrk , Eq. (18) for
total pressure drop, scale Eqs. (22)–(26). As a result, sinc
length distribution is the same, the relations for dissipation
the pore volume distribution are the same. Minimizing press
drop or minimizing dissipation are therefore equivalent, ill
trating the close physical connection between these notion

The question that then arises is whether it is useful to in
duce dissipation. We believe it is the case for two reasons.
first reason lies in the possibility to define a dissipation d
sity and to state a general result such as the uniform dissip
density theorem, valid for all constructs discussed here. R
that in the dichotomic construct, dissipation density is unifo
whereas pressure drop is not equal in channels of different
erations (that have different volumes). It would therefore
be possible to state a conservation or equipartition proper
terms of pressure drop. The second reason is outside the
of the present paper and concerns processes where phe
ena other than viscous flow, such as heat and/or mass tra
would contribute to dissipation. Dissipation, or even more g
erally, entropy production, is then a more appropriate notion
optimization.

A different line of thought around the same concepts is
consider the deterministic structure as a random porous me
and introduce the methods, models and variables pertine
this domain. As a hint, suppose we wanted to characterize
structure by some kind of permeability or permeance, defi
as the ratio of overall flow-rate (m3·s−1) to the total pressur
drop (Pa). Eqs. (18) or (19) obviously furnish such a relat
The ratiof0/�P does not furnish a conventional permean
usually defined per unit cross-sectional area (m·s−1·Pa−1), be-
cause the cross-sectional area of the construct is variable
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Fig. 9. Invasion of binary-branched structure by a tracer–liquid. Photographs are ordered at increasing times from left to right and top to bottom
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so is the flow velocity. A conventional permeance would the
fore be a variable or would have to be averaged, thus limi
the interest of this notion.

Finally, we should like to address briefly the issue ofopti-
mization of the number of scales. In the present approach, th
number is not an optimization variable but a decision varia
chosen a priori by the designer on the basis of the “finen
-
g

”

of the irrigation (number of outlet ports per unit surface, sa
or alternately, defined by the number of channels or tubes
need to be fed. Increasing the fineness of irrigation, thus
number of scales, implies increasing the total pore volume
the numerical example in [4]). The latter is not an optimizat
variable, because just as the number of scales, it is mainta
constant during the optimization.
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Suppose now that there was a device downstream of the
let ports, achieving a finer distribution on the whole surface,
just at discrete points, such as a fine grid or porous plug,
ing itself a flow resistance. The question is then how the ove
resistance should be distributed between the branched dis
tor and this grid, and therefore how many branching scales
useful. If we assume that the pressure drop in the grid is pro
tional to the average distance of a point of the irrigated sur
to an outlet port, then this quantity decreases when the fine
of the distributor thus the number of scalesm increase (specif
ically, for the dichotomic case, this distance is divided by t
at every increase ofm by 2). On the other hand, the pressu
drop in the branched distributor increases asσ(m). The total
pressure drop is thus the sum of a decreasing function an
an increasing function ofm, leading obviously to some optima
number of scales. Formulated in this way, the problem is cl
to that commonly addressed with the constructal approach
problem of cooling a poorly conducting surface by distribut
into it a good conducting material. In this case, as discusse
cently in detail by Ghodoossi [8], the number of scales sho
be considered as an optimization variable. Depending on
respective resistances, this optimal may well correspond
small number of scales, for which the general recurrent r
tions presented here are not needed.
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